

A293237


Decimal expansion of the escape probability for a random walk on the 3D fcc lattice.


3



7, 4, 3, 6, 8, 1, 7, 6, 3, 4, 9, 5, 3, 5, 1, 2, 2, 8, 9, 0, 4, 9, 6, 9, 8, 1, 9, 3, 6, 5, 3, 7, 6, 4, 8, 0, 5, 0, 9, 6, 0, 2, 2, 5, 0, 9, 0, 5, 1, 2, 1, 7, 0, 5, 6, 6, 2, 0, 4, 4, 3, 9, 3, 4, 0, 1, 9, 4, 3, 3, 5, 6, 7, 3, 5, 3, 7, 6, 6, 8, 2, 2, 9, 6, 1, 1, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The return probability equals unity minus this constant. The expected number of visits to the origin is the inverse of this constant.
The escape probability for the hcp lattice also equals this constant. The escape probability for the diamond lattice is 3/4 times this constant.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000
Shunya Ishioka and Masahiro Koiwa, Random walks on diamond and hexagonal close packed lattices, Phil. Mag. A, 37 (1978), 517533.
G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B 7 (1973), 650662.
Index entries for sequences related to f.c.c. lattice
Index entries for sequences related to walks


FORMULA

Equals 2^(14/3)*Pi^4/(9*Gamma(1/3)^6).


EXAMPLE

0.74368176349535122890496981936537648...


MATHEMATICA

RealDigits[2^(14/3)*Pi^4/(9*Gamma[1/3]^6), 10, 100][[1]] (* G. C. Greubel, Oct 26 2018 *)


PROG

(PARI) 2^(14/3)*Pi^4/(9*gamma(1/3)^6) \\ Altug Alkan, Apr 09 2018
(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); 2^(14/3)*Pi(R)^4/(9*Gamma(1/3)^6); // G. C. Greubel, Oct 26 2018


CROSSREFS

Cf. A242761, A293238.
Sequence in context: A244817 A303612 A306555 * A316250 A199727 A255168
Adjacent sequences: A293234 A293235 A293236 * A293238 A293239 A293240


KEYWORD

nonn,cons


AUTHOR

Andrey Zabolotskiy, Oct 03 2017


STATUS

approved



